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ABSTRACT

The relation between skill and fidelity of seasonal mean hindcasts of surface temperature by seven coupled
atmosphere–ocean models is investigated. By definition, fidelity measures the agreement between model and
observational climatological distributions, and skill measures the agreement between hindcasts and their
corresponding verifications. While a relation between skill and fidelity seems intuitively plausible, it has not
been checked systematically, nor is it mandated mathematically. New measures of skill and fidelity based on
information theory are proposed. Specifically, fidelity is measured by the area average relative entropy be-
tween the climatological distributions of the model and observations, and skill is measured by the area av-
eraged mutual information between forecast and verification. The fidelity measure is found to be dominated
by the term measuring mean bias; that is, the discrepancy in climatological means is much larger than the
discrepancy in climatological variances. Moreover, the mean bias is negatively correlated with skill at most
initial months, lead times, and regions examined. Thus, models that more closely replicate the observed
climatological mean tend to have better skill.

1. Introduction

The purpose of this paper is to test whether the skill of
dynamical model hindcasts is related to the fidelity with
which the model simulates the climatology. Here, fidel-
ity refers to the degree to which the climatology of the
hindcasts matches the observed climatology, and skill re-
fers to the degree to which individual hindcasts match
individual verifications. In general, models with poor cli-
matologies are expected to have poor skill. For instance,
storm track models suggest that the characteristics of
synoptic fluctuations about the mean flow depend on the
mean flow itself (Chang et al. 2002; DelSole 2004b),
suggesting that a more accurate mean flow would trans-
late into more accurate synoptic forecasts. Similarly, ide-
alized models of ENSO consistently show that ENSO
variability depends on the structure of the mean ther-
mocline (Kirtman and Schopf 1998; Fedorov et al. 2003),
suggesting that coupled atmosphere–ocean models that
simulate the mean thermocline more accurately also will
predict ENSO more accurately, all other things being
equal. In extreme cases, models that generate incorrect
circulation fields cannot be expected to have any skill.

Nevertheless, it should be recognized that skill and
fidelity need not be related. For instance, the climato-
logical mean of a linear model can be controlled in-
dependently of the variability about the mean (e.g., by
adjusting the mean forcing); hence, the quality of linear
forecasts about the climatological mean can be inde-
pendent of the quality of the climatological mean itself.
Another counterexample is provided by DelSole et al.
(2008) and Yang et al. (2008), who added empirical
forcing terms to atmospheric general circulation models
to improve the climatological mean, but found no con-
sistent improvement in skill.
In practice, dynamical model forecasts drift from the

observed climate, leading to a difference from the obser-
vation. To mitigate the effects of drift, forecasters rou-
tinely subtract the climatological mean from the forecast
and verification separately and then compare the corre-
sponding anomalies. Numerous studies have confirmed
that anomalies forecasted by dynamical models have skill
even on seasonal time scales [see the July 2000 issue of
theQuarterly Journal of the Royal Meteorological Society
and Palmer and Hagedorn (2006)]. In most prediction
studies, however, the specific climatological mean that is
subtracted from the forecast often is discarded without
commenting on how close it is to the observed climato-
logical mean. This practice makes it difficult to ascertain
whether a relation exists between skill and fidelity.
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The existence of a skill–fidelity relation in dynamical
models would have significant implications for model
development and climate change projections. For in-
stance, if skill and fidelity were related, then one approach
to improving the skill of a dynamical model is to improve
its climatology [although DelSole et al. (2008) and Yang
et al. (2008) show that simple empirical corrections do not
generally improve skill]. Within the context of climate
change projections, the question arises as to whether some
projections are more trustworthy than others. Shukla et al.
(2006) found that models that more accurately simu-
lated the climatological distribution of surface temper-
ature of the past 100 yr also tended to produce higher
values of global warming for a doubling of CO2 concen-
tration. This result suggests that the projected warming
due to increasing greenhouse gases is likely to be closer
to the highest projected estimates—assuming that models
with greater fidelity also have greater skill. Unfortunately,
the last assumption cannot be checked because verifica-
tions for climate change projections are not available.
However, such a relation can be tested for shorter lead-
time hindcasts, for which verifications are available.
Since fidelity is a measure of how well the climatology

of forecasts replicates the observed climatology, quan-
tifying fidelity requires a measure of the difference be-
tween two distributions. Moreover, we seek a measure
that allows different variables with different units to be
taken into account. Also, we want a single measure that
measures the fidelity of spatially varying variables as a
whole. Similarly, skill is a measure of how well the fore-
cast and verification covary, but it is not clear how to
combine measures of skill at different locations and var-
iables to give a measure of skill as a whole.
This paper proposes new measures of fidelity and skill

that have several attractive properties. Specifically, we pro-
pose measuring fidelity based on the spatially averaged
relative entropy between the climatological distributions of
the model and observations, and measuring skill based on
the spatially averaged mutual information between the
forecast and corresponding verification. These measures
are central to information theory (Cover andThomas 1991)
andwill be discussedmore fully in sections 2 and 3. Second,
we evaluate and test the significance of these measures for
a set of seasonal hindcast derived from theDevelopment of
a European Multimodel Ensemble System for Seasonal to
Interannual Predictions (DEMETER) project, as discussed
in section 5.Wefind that skill tends to increasewith fidelity.
We conclude with a summary and discussion of our results.

2. Measures of skill and fidelity

Skill refers to the degree to which forecasts and verifi-
cations are related to each other. In information theory, the

natural measure of the dependence between variables is
mutual information (Cover and Thomas 1991), defined as

M(f; v)5
ð
p(f, v) log

p(f, v)

pf (f)py(v)

" #

df dv, (1)

where p(f, v) is the joint distribution between forecast
and verification, and pf(f) and py(v) are the respective
marginal distributions. The above integral is interpreted
as a multivariate integral over the support of f and v. If
the forecast is independent of the verification, and hence
the forecast has no skill, then by definition

p(f, v)5 pf (f)py(v). (2)

Substitution of (2) into (1) gives M(f; v) 5 0, which
shows that mutual information vanishes if the forecast
and verification are independent. It turns out that mu-
tual information vanishes if and only if (2) is true. Thus,
mutual information provides a fundamental measure of
skill, in the sense that it vanishes if and only if the
forecast and verification are independent.
Fidelity refers to the degree to which the distribution

of all forecasts matches the observed climatological
distribution. As such, fidelity depends only on the mar-
ginal distributions while skill depends on the joint dis-
tributions; that is, fidelity is measured independently of
skill. In information theory, an often used measure of
the difference between two distributions is the relative
entropy (Cover and Thomas 1991), defined as

R5
ð
py(x) log

py(x)

pf (x)

" #
dx. (3)

If the distribution of all forecasts equals the observed
climatological distribution, then py(x)5 pf(x) and R5 0,
showing that relative entropy vanishes if fidelity is per-
fect. It turns out that relative entropy vanishes if and
only if the forecast and verification have the same cli-
matological distribution. Because relative entropy van-
ishes for perfect fidelity, it is perhaps more accurate to
say that relative entropy measures discrepancy.
Both mutual information and relative entropy have

a number of mathematical properties that make their
use attractive. First, both measures are invariant to in-
vertible nonlinear transformations of the state. This in-
variance implies that variables with different units or
natural variances can be included in a single state vec-
tor without scaling, since such scaling cannot affect the
value of the measure. Second, if selected state variables
are mutually independent, then mutual information and
relative entropy are separately additive. For instance,
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the relative entropy of two independent variables equals
the sumof the relative entropy of the individual variables.
Third, relative entropy and mutual information have an
immense number of applications in statistics, signal de-
tection, stock market analysis, and communication the-
ory. Thus, mutual information and relative entropy have
a wide variety of other interpretations that may be useful
beyond predictability itself.
Both mutual information and relative entropy are non-

negative and unbounded. These measures can be con-
verted into ‘‘scores’’ between 0 and 1 using the following
transformations:

skill score5 1! e!2M fidelity score5 e!2R. (4)

Joe (1989) has shown how these transformations reduce
to standard statistical quantities in certain cases. For
instance, if the forecast and observations are bivariate,
normally distributed, then the above skill score reduces
to the squared correlation coefficient. In this paper, we
consider M and R directly rather than the above score
measures.
Unfortunately, the probability distributions required to

evaluate the above quantities are not known and hence
must be estimated from finite samples. Estimation of these
quantities for multivariate data is difficult. A typical ap-
proach is to project variables onto a few leading principal
components and then evaluate the relative entropy and
mutual information in this reduced space (Shukla et al.
2006). Unfortunately, the results of this approach pertain
to the particular principal components of the dataset, and
can be sensitive to the chosen number of principal com-
ponents. [Shukla et al. (2006) analyzed 100-yr datasets
using the leading 15 components of two different ‘‘flavors’’
of principal components.] To obtain more robust and re-
producible estimates, we propose calculating eachmeasure
individually and independently at each point, and then
averaging each measure over a selected domain to obtain

a single measure for the domain. This approach ignores the
influence of spatial correlations, which is a compromise for
estimating these quantities with small sample sizes and no
prior information. It is sensible to average the relative en-
tropy and mutual information, as opposed to some other
function of these quantities, because these measures are
additive for independent events. In general, the properties
of relative entropy and mutual information noted above
do not carry over to their spatially averaged counterparts.
Nevertheless, reasons for preferring these measures are
noted at the end of this section.
Second, we assume that the variables are normally

distributed. In this case, both relative entropy and mu-
tual information can be written in closed form in terms
of the mean and variance of the variables (DelSole
2004a).When all of these assumptions andmodifications
are incorporated, our measure of discrepancy (or in-
verse fidelity) becomes

D5DB 1DV , (5)

DB 5!
grid

(my ! m f )
2

s2
y

DA, and (6)

DV 5!
grid

s2
f

s2
y

! log
s2

f

s2
y

 !
! 1

" #
DA, (7)

TABLE 1. Designation and source of the hindcasts from the
DEMETER project used in this paper.

Designation Center

CER European Centre for Research and Advanced
Training in Scientific Computation, France

ECM ECMWF, International
ING Istituto Nazionale de Geofisica e Vulcanologia,

Italy
LOD Laboratoire d’Océanographie Dynamique et

de Climatologie, France
MET Centre National de Recherches Météorologiques,

Météo-France, France
MPI Max-Planck Institut für Meteorologie, Germany
UKM Met Office, United Kingdom

TABLE 2. The designation and boundaries of regions used to
compute area-averaged skill. Only land points are included in the
defined regions.

Designation Boundaries

North America NAM 208–808N, 1688–508W
South America SAM 608–208N, 1108–258W
Europe EUR 358–808N, 308W–508E
Asia ASIA 08–808N, 508W–1808
Africa AFR 408S–358N, 208W–508E
Australia AUS 508–108S, 1108W–1808
Tropics TRP 238S–238N, 08–3608
Globe GLB 608S–808N, 08–3608

TABLE 3. The designation and boundaries of regions used to
compute area-averaged skill. Only ocean points are included in the
defined regions.

Designation Boundaries

North Atlantic NAT 308–608N, 908W–08
North Pacific NPC 308S–608S, 1308–2408E
Indian IND 108S–208N, 308–1208E
Tropical Atlantic TAS 208S–308N, 808W–208E
Niño-3 NIÑO-3 58S–58N, 2108–2708E
Niño-4 NIÑO-4 58S–58N, 1608–2108E
Niño-3.4 NINO34 58S–58N, 1708–1508W
Globe GLB 608S–808N, 08–3608
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and our measure of skill S is

S5!!
grid

log(1! r2)DA, (8)

where my, sy
2 are the mean and variance of the verifica-

tion in each grid box, respectively; mf, sf
2 are the mean

and variance of the forecast in each grid box, re-
spectively; r is correlation between the ensemble mean
forecast and verification in each grid box; and DA is
the fractional area of a grid box (including cosine of
latitude).
The skill measure (8) is invariant to the sign of the

correlation r; a forecast that is negatively correlated
with verification is deemed just as skillful as a forecast

that is positively correlated. Whether this convention is
appropriate depends on the study. To avoid counting
negative correlations toward skill, one might average
skill only over grid cells with positive correlations, but
this approach would lead to biased skill estimates since
the omitted cells were identified a posteriori. Another
approach is to replace r2 with rjrj, which penalizes
against negative correlations, but then we lose contact
with information theory. It turns out that both of these
approaches give results similar to each other and similar
to the original definition (at least in the present paper).
Hence, we use (8) directly for our measure of skill.
Similarly, the term DB in (6) is a measure of forecast

bias, normalized by the observed standard deviation. This
ratio is similar to that used in the familiar t test to test

FIG. 1. Box-and-whisker plots for the area-averaged model error (as measured by spatially
averaged relative entropy; described below) between the hindcast and observed climatology of
3-month-average T2 m over (top) ocean and (bottom) land as a function of model. In each
panel, the top box-and-whisker plot indicates the normalized spatially averaged biasD, defined
in (6) and the bottom box-and-whisker plot indicates spatially averaged differences in variance
DV defined in (7); both quantities are dimensionless. Only grid points between 608S and 808N
are included in the area averages. The plot graphically depicts the range of values (16 in all,
corresponding to the 4 initial months and 4 hindcast seasons) as follows: the top and bottom
edges of the box indicate the top and bottom quartiles, the centerline in the box denotes the
median, and the whiskers at the top and bottom extend to the most extreme data points, which
are no more than 1.5 times the interquartile range from the box.

15 SEPTEMBER 2010 DEL SOLE AND SHUKLA 4797



a difference in means. The termDV in (7) is a measure of
the difference in variances between the forecasts and
verifications. For instance, DV vanishes if sf 5 sy and is
positive otherwise. Thus, DB measures how well the cli-
matological means agree between forecasts and verif-
ications, and DV measures how well the climatological
variability agrees between forecasts and verifications.
The correlation coefficient r, needed to evaluate skill

in (8), is computed between the ensemble mean hindcast
and verification, for each initial day, lead time, and grid
box separately. The climatological mean mf and vari-
ance sf

2 of the hindcasts, needed to evaluate discrepancy
in (5), is computed as the average over all ensemble
members and all years, for a fixed initial day, lead time,
and grid box. The climatological mean and variance of
the verifications are computed similarly, except with
only one realization. The reasons for using an ensemble
mean forecast to measure skill but individual ensemble
means tomeasure fidelity are discussed inDelSole (2005).
Loosely speaking, the best single forecast is the ensem-
ble mean, so it is appropriate to use the ensemble mean
when estimating forecast skill. In contrast, fidelity mea-
sures the degree to which the model simulates the cli-
matology. In a sense, fidelity is a property of a single
realization of the forecast model, so it is appropriate

to use individual ensemble members to measure fidelity.
Ensemble means would be inappropriate for measuring
fidelity because they would have too little variance
compared to unaveraged realizations.
We further note that the above measures are closely

related to more traditional measures. For instance, for
small correlations our skill measure is approximately

S5!!
grid

log(1! r2)DA’!
grid

r2DA, (9)

which is simply the spatially averaged squared correla-
tion coefficient. Since the squared correlation can be
interpreted as the fraction of variance explained by the
forecast, S can be interpreted as the average fractional
variance explained by the forecast. Similarly, for weakly
varying climatological variance sy

2, the bias term in the
relative entropy is approximately

DB ’
1

s2
y

!
grid

(my ! m f )
2DA, (10)

which is proportional to the spatially averaged squared
bias in the domain. Even though our measures reduce

FIG. 2. The model error, as measured by the normalized bias DB defined in (6) in 3-month-
average T2 m over (top) ocean and (bottom) land as a function of the verifying 3-month av-
erage. Each curve corresponds to one of the 7 hindcast models, and begins and ends in the
corresponding 3-month-average period of the 6-month hindcasts.
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approximately to traditional measures, we argue that the
proposed measures based on information theory never-
theless are preferable owing to 1) the measures can be
applied to multiple physical variables with different units,
2) the measures are additive when variables are indepen-
dent, 3) the measures generalize to non-Gaussian distri-
butions, and 4) the measures generalize to multivariate
distributions, at least in principle.
The fact that the bias termDB normalizes the forecast

variance by the climatological variance sy
2 deserves fur-

ther comment. In general, spatially averaged squared
biases can be highly misleading when the natural vari-
ances differ by orders of magnitude, as is the case for
precipitation rate, or when variables have different units.
On the other hand, this normalization becomes prob-
lematic for regions with very small variances, because
then the average is dominated by a few points with very
small variance estimates. An example of this is precipi-
tation in desert regions. However, in this case the pre-
cipitation is highly non-Gaussian, so our metrics derived
from theGaussian assumption are inappropriate.A better
approach would be to account for the non-Gaussian
structure of precipitation directly and then to compute the
corresponding skill and fidelity measures. We are cur-
rently exploring this possibility.

3. Statistical significance of skill and fidelity

The question arises as towhether the observed skill and
fidelity are larger than would be expected ‘‘by random
chance.’’ The appropriate significance test is difficult to
derive since mutual information and relative entropy are
averaged over a domain with unknown statistical char-
acteristics. Accordingly, we adopt resampling techniques.
To estimate the sampling distribution of skill, under the

null hypothesis that the forecast and verification are in-
dependent, we first select the model, initial month, and
lead time, and then pair the actual verification of each year
with a randomly selected ensemble mean forecast out of
the hindcasts from thatmodel, initialmonth, and lead time.
This procedure yields a set of forecast–verification pairs of
the same size as the original sample (i.e., 22 in this paper),
fromwhich the skill of each domain can be computed. This
procedure is repeated 100 times for each model, initial
month, and lead time.
To estimate the sampling distribution of the fidelity,

under the null hypothesis that the forecast was drawn
from the verification distribution, we first select a sea-
son, then randomly select with replacement the same
number of verification fields in that season as years in
the sample (i.e., 22 in this paper). From the resulting

FIG. 3. Box-and-whisker plots ofmodel error, asmeasured by the normalized biasDB defined
in (6) in 3-month-average T2 m over (top) ocean and (bottom) land for hindcasts initialized in
November and verified in February–April (‘‘lead-3’’). Each box-and-whisker plot depicts the
values of DB in 8 different regions.
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dataset, the mean and variance are calculated at each
point, and then the spatially averaged relative entropy
between the two resampled datasets is computed. This
procedure is repeated 100 times for each season.
To determine whether the sampling distributions

depend on the model, initial month, or lead time, the
Kolmogorov–Smirnov (KS) test was performed on ev-
ery combination of these parameters. For a fixed model
and region, no dependence on initial month and lead
time could be detected more often than would be the-
oretically expected (i.e., no more than 5% of the tests
rejected the hypothesis of no difference at the 5% level).
Consequently, samples from different initial months and
lead times were pooled, increasing the number of sam-
ples from 100 to 1600. After pooling, the 95th percentiles
were determined for each model and region.
If the observed skill exceeds the 95th percentile for that

model and region, then the hypothesis that the model has
no skill is rejected at the 5% significance level (the model
‘‘has skill’’). A similar procedure was performed for spa-
tially averaged relative entropy, including the bias and
variance terms separately. For reference, the 5% thresh-
old values for skill S range between 0.03 and 0.10,
depending on model and region (with the global aver-
age producing the smallest threshold values). The 5%

threshold values of biasDB range between 0.08 and 0.15,
and those for variance DV range between 0.08 and 0.28.

4. Data

The variable studied in this paper is 2-m temperature
(T2 m). The hindcasts used in this study are from the
DEMETER project. This dataset consists of 6-month
hindcasts by seven global coupled atmosphere–ocean
models. The seven models are listed in Table 1. These
hindcasts were initialized 4 times a year, namely on
1 February, 1 May, 1 August, and 1 November. For each
initial day, an ensemble of nine hindcasts was produced by
each model. Only hindcasts made for the years 1980–2001
are considered, since this period is the only one in which
hindcasts from all seven models were available. Further
details of the DEMETER hindcasts can be found in
Palmer et al. (2004). The verification dataset is the Na-
tional Centers forEnvironmental Prediction–Department
of Energy Global Reanalysis 2 (Kanamitsu et al. 2002).
All datasets were interpolated onto a common 2.58 3

2.58 grid. Only 3-month averages are considered. To fa-
cilitate a description of the results, the skill and fidelity
measures were averaged over selected regions of the
globe. These regions follow those of Barnston and Smith

FIG. 4. As in Fig. 3, but for the average over all models. The maximum value in the top panel
has been fixed at 20, which ‘‘clips’’ the extreme values produced by the MPI model. Each box-
and-whiskers plot depicts the values of DB for the 7 DEMETER models.
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(1996) and DelSole and Shukla (2006), and are tabulated
in Tables 2 and 3.

5. Results

The spatially averaged relative entropy between the
climatology of the hindcasts and verifications was evalu-
ated for all domains listed in Tables 2 and 3. The contri-
bution due to bias was found to be much larger (often
by an order of magnitude) than the contribution due to
differences in variance, for all initial conditions, lead
times, and domains examined. Virtually all (over 99%)
biases are statistically significant. A typical result is
shown in Fig. 1, which shows the range of the spatially
averaged relative entropy for hindcasts verifying in the
last 3 months of a 6-month hindcast. The top box-and-
whiskers plot in Fig. 1 shows the termDB, which quantifies
the bias in the climatology, while the bottom box-and-
whiskers plot shows the term DV, which quantifies the
differences in the variance. The bottom box-and-whisker
plots can hardly be distinguished from straight lines owing
to their small values relative to the bias terms.
Since the bias term DB dominates the spatially aver-

aged relative entropy, there is little loss of accuracy in
ignoring the DV term. Furthermore, the bias term DB

has a simple interpretation as a normalized measure of
the difference in the climatological means. Finally, no
obvious relation exists between skill S and the discrep-
ancy in the varianceDV. Accordingly, we hereafter ignore
the DV term in fidelity and consider only the bias term
DB in fidelity.
The average bias DB of each model over land and

ocean is shown in Fig. 2 as a function of lead time and
start date. The top panel in Fig. 2 reveals that the bias
over the ocean generally increases monotonically with
lead time, suggesting climate drift. However the bottom
panel in Fig. 2 shows that the T2 m bias at the end of the
integration period tends to be close to the bias at the
beginning of the next hindcast. This result suggests that
the hindcast bias effectively saturates over land in the
first 3 months of integration.
As an example of the typical range of biases, we show

in Fig. 3 the biases for hindcasts initialized in November
and verified in February–April. The top panel in Fig. 3
reveals that the bias of theMPImodel ismuch larger than
that of the others over the ocean. This result holds for
other initial months and lead times. The other models
tend to have overlapping bias ranges between 2 and
10 units. Results for other initial months are similar, ex-
cept that the magnitudes change, as indicated in Fig. 2.

FIG. 5. The skill S defined in (8) in predicting 3-month-average T2 m over (top) ocean and
(bottom) land as a function of the verifying 3-month average. Each curve corresponds to one of
the seven hindcast models, and begins and ends in the corresponding 3-month-average period
of the 6-month hindcasts. All skills displayed are statistically significant at the 5% level.
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The fact that the MPI model has larger biases relative
to other models is probably due to the fact that the MPI
model was initialized differently from the others. Spe-
cifically, the MPI model was initialized from coupled
runs relaxed to observed sea surface temperatures,
whereas most of the other models used initial conditions
more closely related to the observations [e.g., the initial
atmospheric and land states were taken directly from the
40-yr European Centre for Medium-Range Weather
Forecasts (ECMWF) Re-Analysis; Palmer et al. (2004)].
As such, the initial states for theMPImodel are probably
closer to the model’s own climatology than to the ob-
servations, which may have advantages with respect to
climate drift, but will contribute to a large bias by our
measure. The fact that the MPI model is an ‘‘outlier’’
raises the possibility that it might have a disproportion-
ate influence on the results. This turns out not to be true:
our major conclusions remain the same whether or not
the MPI is included in the pool of models.
A typical range of biases over different regions is shown

inFig. 4, for hindcasts initialized inNovember and verified
in February–April. Figure 4 reveals that the median bias
termDB tends to be smallest in the equatorial Pacific and
largest for the global average (note that the selected ocean
regions do not cover the globe completely, so the global

ocean bias is not a weighted average of individual regional
biases). The bias in South American (‘‘sam’’) tends to be
larger than that of other land areas, and this difference
becomes more pronounced at other lead times.
Since the skill of the DEMETER hindcasts has been

investigated extensively (Palmer et al. 2004; Hagedorn
et al. 2005), we limit our discussion of skill to a few basic
points. Of the predefined regions, 92% of the ocean
regions and 54% of the land regions have hindcasts with
statistically significant skill. As an illustrative example,
the skill of predicting global average T2 m as a function
of lead time is shown in Fig. 5. In this particular case, all
relevant skill values are statistically significant at the 5%
level. The skill over the ocean is generally larger than
the skill over land. Although skill generally decreases
with lead time, sometimes it increases with lead time.
These increases tend to be small and short lived com-
pared to the decreases. In addition, the magnitude of the
increase tends to be within a standard deviation of the
corresponding sampling variability of skill, suggesting
that these increases are random fluctuations about the
‘‘true skill’’ due to sampling error.
The range of skill values over different geographic

regions is shown in Fig. 6, where we can see that the skill
depends significantly on geographic region, with tropical

FIG. 6. Box-and-whisker plots of the skill S defined in (8) in 3-month-average T2 mover (top)
ocean and (bottom) land for hindcasts initialized in November. The box-and-whisker plots
depict the range of S for 7 DEMETERmodels and 4 verification seasons (for a total of 28). All
values of S are included regardless of statistical significance.
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regions generally exhibiting more skill than extratrop-
ical regions. The equatorial Pacific is hindcasted with
the most skill and Australia with the least skill. South
America also stands out as a region with consistently
larger skill than other land areas.
Scatterplots of skill versus bias for selected regions

and lead times are shown in Fig. 7. The correlation be-
tween skill and bias for each initial month is indicated in
the legend, while the correlation over all initial months
is indicated at the top of each panel. Figure 7 shows
a clear tendency for the skill S to be inversely related to
the bias DB. Figure 7 also shows that the negative cor-
relations are not caused by single outliers.
The skill–fidelity relation over South America de-

serves special consideration. Recall that this region was
found to have the largest bias among the land regions

(see Fig. 4), but also the largest skill (see Fig. 6). This
positive relation seems inconsistent with our conclusion
that skill and bias are inversely related. However, the
results shown in Fig. 7 show that skill and bias are in-
versely related within South America. Thus, the inverse
skill–bias relation holds in a relative sense rather than in
an absolute sense.
The correlations between skill and bias for each re-

gion, initial day, and lead time a shown in Figs. 8 and 9.
No correlation was computed if at least one model had
statistically insignificant skill, where insignificant skill
implies that the skill measure is dominated by sampling
errors and thus will not have a relation with the bias.
Figures 8 and 9 show a strong tendency for the corre-
lations to be negative, especially on the global scale
[counts of the positive (negative) correlations are 20 (49)

FIG. 7. Scatterplots of the skill (S) vs model error, as measured by the normalized bias DB, of hindcast T2 m by 7
coupled atmosphere–ocean models from the DEMETER project, for 4 different initial months verifying in the first
3 months of integration. Shown are results for (top left) global ocean, (bottom left) global land, (top right) Niño-3.4
region, and (bottom right) sam (the regions are defined in Tables 2 and 3). The numbers in the legend give the
correlation coefficients for the data having the indicated initial month. The correlation coefficient for all the points is
indicated at the top of each panel.
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for land and 13 (105) for ocean]. If no relation existed
between skill and fidelity, then the sample correlation
would be just as likely to be positive as negative.

6. Summary and discussion

This paper investigated the skill and fidelity of sea-
sonal mean hindcasts of surface temperature by seven
coupled atmosphere–ocean models. The skill and fidel-
ity measures were based on spatially averaged mutual
information and relative entropy, respectively.
Spatially averaged relative entropy was dominated

by the term measuring the difference in climatological
means. Over oceans, the bias term tended to increase
monotonically with lead time, suggesting climate drift,

whereas over land it was nearly as large at the beginning
of the forecast as at the end of the previous forecast,
suggesting saturation within the first 3 months. The bias
of individual models ranged over similar values, except
for the MPI model, which tended to have larger bias
than the other models.
Of the predefined geographical regions, 92% of the

ocean regions and 54%of the land regions were found to
have hindcasts with statistically significant skill. Not
surprisingly, the skill over the ocean tended to be larger
than the skill over land. The skill varied substantially
with region, with the tropics tending to have larger skill
than the extratropics. The most skillful regions exam-
ined were the Niño-3 and Niño-3.4 regions, whereas the
least skillful region was Australia. South America was
found to have the most skill over land.

FIG. 8. The correlation coefficients between skill (S) andmodel error asmeasured by the normalized biasDB of hindcast T2 mover landby
7 coupled atmosphere–ocean models analyzed separately for 8 regions (indicated at the top of each plot), 4 initial months, and 4 verifying
3-month periods. The results are organized such that the first 4 bars give the correlations for hindcasts starting in November, then the next 4
are for hindcasts starting in February followed by those starting inMay and in August (giving a total of 16 correlations in each region). Only
results in which all 7 DEMETER models have statistically significant skill for the given initial month and lead time are included.
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The bias and skill of different models at the same
initial month, lead time, and region tend to be negatively
correlated. This relation holds whether theMPImodel is
included or not, and tends to be stronger for larger re-
gions. We find that negative correlations between bias
and skill outweigh positive correlations by over 2 to 1
over land regions, and over 8 to 1 over ocean regions. If
no relation existed, then these ratios would be about 1 to 1.
We conclude that skill and fidelity are positively related
in this hindcast dataset: models that poorly simulate the
observed climatological mean tend to have poor sea-
sonal prediction skill, while models that more closely
replicate the observed climatological mean tend to have
better seasonal prediction skill.
We note that the bias–skill relation applies in a rela-

tive sense rather than an absolute sense. For example,
over land, South America was found to have the largest
bias as well as the largest skill. However, bias and skill
are negatively correlated within South America. Also,
bias and skill are not expected to be related over small

domains. Indeed, a bias in one region ought to affect the
skill in neighboring regions, even if the bias in the
neighboring regions is not particularly large. In general,
the bias–skill relation seems most physically justified
over global domains rather than local domains.
Despite the clear relation between skill and bias dem-

onstrated here, one should not jump to the conclusion that
the skill of a model can be improved merely by improving
its fidelity empirically. Recently, DelSole et al. (2008) and
Yang et al. (2008) empirically corrected dynamical fore-
cast models by subtracting the climatological mean ten-
dency error at each time step. The empirically corrected
model was found to have substantially less bias, but the
hindcast skill was not consistently improved. Likewise, Pan
et al. (2009, manuscript submitted toClimate Dyn.) found
that applying a constant heat flux correction to a coupled
model considerably reduced the bias in the tropical ocean
surface temperature, but led to no improvement in the
seasonal forecast skill. Thus, merely reducing the bias by
empirical means is not sufficient to improve the skill.

FIG. 9. As in Fig. 8, but for ocean regions.
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The fact that skill and fidelity are related may be rel-
evant to multimodel methods. For instance, Giorgi and
Mearns (2002) and Tebaldi et al. (2004, 2005) propose
methods of combining climate change projections inwhich
the weight given to a projection is inversely related to the
degree of bias (among other things). If no relation exists
between skill and fidelity, then allowing a weight to de-
pend on bias would be questionable. Demonstration of
this relation therefore supports the approach. However,
the precise relation between weights and fidelity in mul-
timodel combinations is not obvious because individual
weights cannot be interpreted as relative model ‘‘re-
liability’’ (Hasselmann 1979; Kharin and Zwiers 2002).
The skill–fidelity relation found in this paper lends

credibility to the argument that models that better rep-
licate the past climatology also produce more skillful
forecasts. Shukla et al. (2006) found that themodels with
greater fidelity also tend to show stronger warming to the
same change in greenhouse gas concentration. If the skill–
fidelity relation found here for seasonal hindcasts holds
for climate projections, then the results of Shukla et al.
(2006) imply that the projected warming due to increasing
greenhouse gas concentration is likely to be closer to the
highest projected estimates among the current generation
of climate models.
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